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The effectiveness of destination IP address filtering against fast worm epidemics is 

analyzed. It is shown that its impeding effect depends heavily on the deployment 

ratio. If wide deployment is only achieved, which we argue is not as impractical as 

one might think, it can fundamentally block so called fast epidemics. 

 

Introduction: Today’s worm epidemics entered a regime where their spread is so 

overwhelmingly fast that traditional human-intervened response is no longer 

adequate. For instance, the SQL Slammer (a.k.a. Sapphire) epidemic infected most 

of the vulnerable nodes in just 10 minutes [1], while substantial response came in 2 

to 3 hours world-wide [2]. Thus the response only stopped side-effects, not the 

worm itself.  From the epidemiological model [3], we can readily prove that the 

infection speed is a function of, most importantly, the scanning rate and the 

vulnerable population size. Namely, the logistic equation below dictates the 

dynamics of the epidemic: 
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where x(t) is the number of infected nodes at time t, K is the total number of 

vulnerable nodes, and x(t=0)=x0 is the number of worms at the outset. r=K/T*v is 

the infection rate, where v is the scanning rate, and T is the scanned space size. 

Since worms typically scan the entire IP address space, T=232. Figure 1 shows the 

time to 90% infection as a function of K, given v=10,000/s (c.f. in SQL Slammer, the 

average was 4,000/s and the recorded maximum was 26,000/s [1]), and x0=1 (i.e., 

worst condition for the worm). In essence, for a fast-scanning worm exploiting any 

vulnerable software with a substantial installed base (e.g. >100,000), the peak 

epidemic is attainable in just a few tens of seconds. Currently, against such fast 

worms we have absolutely no impeding element installed in the Internet 

infrastructure.  Although there is a proposal for a signature-based content filtering 

inside network [4], its practicability is dubious due to the complexity and its inherent 

limitation against encryption and polymorphism that is increasingly employed by 

modern worms and viruses (e.g. Loveletter [5]; There are even worm generator 

softwares on the Web that automatize polymorphic worm generation [6]).  

 

Destination address filtering: Almost without exception, worms randomly scan for 

victims [1,7] (although so called “hit-list” worm [3] accumulates the list of vulnerable 

nodes before the outbreak, in no major epidemic so far the captured worm body 

contained one). For instance, Code Red II generates an address within the same /8 

prefix with probability of 1/2, /16 prefix with 3/8, others with 1/8 [7]. SQL Slammer 

does not have such preference, and it generates a random address with equal 

probability. The randomly generated IP address of a possible victim in this way can 

be illegal in one of two ways – Martian [8] or currently unallocated (a.k.a. “tarpit”) [9]. 

Collectively, these illegal destination addresses occupy 44% of the entire IP 

address space [10]. (Although these blocks are subject to future allocation, the 



procedure is slow enough [11] to reflect on the address checker.) Therefore, more 

than 2 out of 5 infection attempts through random scanning result in the violation of 

the address usage, and we can leverage this property to detect and filter them on 

the packet level. Furthermore, a host can be made to “quarantine” itself if it 

transmits a Martian or unallocated destination address more than a preset number 

of times, say θ, in a given observation interval. In the quarantine, the host launches 

a self-audit, eventually killing the worm within. We can set θ  fairly low (e.g. 5) since 

in reality, there are few innocent hosts that habitually transmit to illegal addresses 

[10]. We will assume that the destination address filtering includes the quarantine 

as well as the packet-level filtering. 

 

Expected impact: Suppose d is the fraction of vulnerable nodes that employ the 

destination based filtering. The address filtering effectively reduces the vulnerable 

population base by a factor of (1-d). Thus the infection rate in Eq. (1) changes to: 

rdr )1( −≈′            (2) 

The approximation is because we allow θ scans before we quarantine the 

perpetrator. Note that K is the number of networked servers on the Internet (whose 

open service a malicious code can exploit). Today, only Web servers and possibly 

some P2P “servers” could be on the order of millions. Even then, K/T should be 

much less than 0.001. With such small K/T, the probability of an infection in θ scans 

is: 
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so we ignore it in Eq. (2). On the other hand, the probability of a perpetrating node 

not caught in θ  random scans is approximately [10]:  
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which is a fast decreasing function of N [10]. N=vL is the number of scan packets in 

a given observation interval L. Since v is so high in fast epidemics, enough to 

cause denial-of-service [1], the “impunity” probability above is negligible. Now we 

show how much time this mechanism buys us at the outset in which to react to an 

epidemic. Figure 2 plots the time to 10% infection as a function of d for four 

different values of K, ranging from 1,000 to 1,000,000. We notice that the address 

filtering effect becomes visible only at high level of d. So it will not help much to 

slow down a fast epidemic  with partial deployment. However, as d approaches 1, it 

can arbitrarily impede the epidemic even for large K. In particular, for d=1, x(t) in Eq. 

(1) (subject to the modification of Eq. (2)) remains at 1, independent of t.  So the 

whole issue is reduced down to whether sweeping deployment is feasible or not. 

We argue that it is feasible. When the operating system platforms in the past large 

epidemics are limited to a small number and only one is exploited at a time, its 

deployment at hosts can be as sweeping and swift as in everyday operating system 

patch. For instance, Microsoft Windows operating systems regularly perform such 

automatic update, and some Linux publishers also provide automatic patches on 

demand [12]. And the update can also deal with the changes of illegal address 

blocks due to future allocation [11]. Finally, as for source address filtering [13] and 

the filtering at IPv4 routers [8], a standard or a “Best Current Practice (BCP)” could 

also be established for the destination address filtering at hosts.  

 

Conclusion: Although the effect is obscure with limited deployment, destination 

address filtering is one of the few fundamental cures we have against so called fast 

worm epidemics. With ubiquitous deployment, the epidemics from the type of worm 



that blindly scans potential victims can be almost completely prevented. Automatic 

operating systems update channels available today could be exploited to facilitate 

wide deployment.  
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Figure captions: 

 

Fig. 1  Speed of epidemic for v=10,000 

 

Fig. 2  Timescale of initial outbreak as a function of d 
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Figure 2 
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